Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia.

نویسندگان

  • R E Westenbroek
  • S B Bausch
  • R C Lin
  • J E Franck
  • J L Noebels
  • W A Catterall
چکیده

Anti-peptide antibodies that specifically recognize the alpha1 subunit of class A-D voltage-gated Ca2+ channels and a monoclonal antibody (MANC-1) to the alpha2 subunit of L-type Ca2+ channels were used to investigate the distribution of these Ca2+ channel subtypes in neurons and glia in models of brain injury, including kainic acid-induced epilepsy in the hippocampus, mechanical and thermal lesions in the forebrain, hypomyelination in white matter, and ischemia. Immunostaining of the alpha2 subunit of L-type Ca2+ channels by the MANC-1 antibody was increased in reactive astrocytes in each of these forms of brain injury. The alpha1C subunits of class C L-type Ca2+ channels were upregulated in reactive astrocytes located in the affected regions in each of these models of brain injury, although staining for the alpha1 subunits of class D L-type, class A P/Q-type, and class B N-type Ca2+ channels did not change from patterns normally observed in control animals. In all of these models of brain injury, there was no apparent redistribution or upregulation of the voltage-gated Ca2+ channels in neurons. The upregulation of L-type Ca2+ channels in reactive astrocytes may contribute to the maintenance of ionic homeostasis in injured brain regions, enhance the release of neurotrophic agents to promote neuronal survival and differentiation, and/or enhance signaling in astrocytic networks in response to injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ.

The major pathological correlate of cerebral palsy is ischemic injury of CNS white matter. Histological studies show early injury of glial cells and axons. To investigate glial cell injury, I monitored intracellular Ca2+ and cell viability in fura-2-loaded neonatal rat white matter glial cells during ischemia. Fura-2 fixation combined with immunohistochemistry revealed that fura-2-loaded cells ...

متن کامل

Increased expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in reactive astrocytes following ischemia.

Astrocytes respond to ischemic brain injury by proliferation, the increased expression of intermediate filaments and hypertrophy, which results in glial scar formation. In addition, they alter the expression of ion channels, receptors and transporters that maintain ionic/neurotransmitter homeostasis. Here, we aimed to demonstrate the expression of Hcn1-4 genes encoding hyperpolarization-activat...

متن کامل

Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via ‎Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein ‎Expression

Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...

متن کامل

The effects of adenosine injection after of brain ischemia reperfusion injury on gene expression of NF-kB/p65 and activity level of ROS in male Wistar rats

Background: Unit of p65 is one of the subunits of NF-κB and its phosphorylation by stress oxidative causes activation of NF-κB. The aim of present study was to investigate the effects of adenosine injection after brain ischemia reperfusion injury on gene expression of NF-κB /p65 and Reactive Oxygen Species (ROS) in hippocampus tissue of male wistar rats. Methods: 40 male wistar rats were rando...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 1998